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ANALYSIS OF BUCKLING AND VIBRATION
OF RING-STIFFENED, SEGMENTED SHELLS OF
REVOLUTIONY

DAviD BUSHNELL}

Lockheed Missiles and Space Company, Palo Alto, California

Abstract-—An energy formulation is used in conjunction with the method of finite differences to develop equations
leading to buckling loads and vibration frequencies of segmented elastic shells of revolution supported by rings
which are treated as discrete elastic structures. A quadratic form for the total potential and kinetic energy is
derived through extensive use of matrix methods. The development is similar to that used in the finite element
method, and is ideally suited for programming on the digital computer. Numerical resuits are presented in which
two types of finite difference approximations are compared, and convergence properties of eigenvalues and
eigenvectors are explored.

NOTATION

A Beginning of shell meridian

A Ring cross-section area

B End of shell meridian

[B;1], [B;2] Equation (14), equation (15)

(] Constitutive equation coefficients, equation (5)

1d] Displacement vector, equation (4¢)

d,,d, Figure 1(a)

D] Equation (17)

E Young’s modulus

[E,), [E,] Equation (23), equation (24)

ey, e, Figure 1(a)

[F] Equation (42)

G Shear modulus

[G4],[G,] Equation (20), equation (21)

H, Hamiltonian corresponding to n-wave pattern

h Finite difference mesh spacing

I Ring moment of inertia (subscripted)

J Ring torsion constant

K Number of shell segments in shell structure

[K,] [K,] Stiffness matrices, equations (2), (45) and (46)

[K™ Equations (38) and (39)

K4y, K,4,,... Boundary condition designators for A end of shell meridian
Kpg,, Kg,,... Boundary condition designators for B end of shell meridian
m Shell mass/area

[M] Mass matrix, equation (47)

M Total number of rings

M Bending moment resultants (subscripted)

n Number of circumferential waves in buckling or vibration mode
N Total number of stations at which H, is evaluated (e.g. 13 in Fig. 1(b))

t The development of the computer program based on the theory described herein was sponsored by the
Structural Mechanics Laboratory of the Naval Ship Research and Development Center under Contract N00014-
67-C-0256, NAVSHIPS Subproject ZF 013 01 01.

1 Staff Scientist, Aerospace Sciences Laboratory.
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N In-plane stress resultants (subscripted)
[N,] Prestress matrix, equation {(4d)

[P] Equation (4f)

p Normal pressure

lq) Displacement vector, equation (10)
(011 (@] Equation (35), equation (36)
r Parallel circle radius, Fig. 1(a)

R Radius of curvature (subscripted), Fig. 1(a)
[R] Equation (16)
s Arc length measured from point 4
As; Weighting factor for numerical integration
1SJ Stress vector, equation (4a)
t Shell thickness
[T] Equation (26)
T, T, Kinetic energy of shell, ring
u, u* Meridional, axial displacement, Fig. 1(a)
U, U, Strain energy of shell, ring
P Constraint “energy”
v, v* Circumferential displacement
|4 Axial load applied to ring centroid
w, w* Normal, radial displacement, Fig. 1(a)
o Spherical shell edge angle
y Rotation around normal, equation (8c)
& Kronecker delta: 8/ = 1 if i = j; 0 otherwise
le) Strain vector, equations 4(b), (6) and (7)
AT Lagrange multipliers for constraint conditions
A Eigenvalue
% Changes in curvature, equation (7)
lw] Rotation vector, equations (4c) and (8)
Q Eigenfrequency
v Rotation about meridian, equation (8b)
1 Rotation of meridian, equation (8a)
0 Circumferential coordinate
v Poisson’s ratio
Subscripts
c Ring centroid
cr Critical
i ith mesh point
j Mesh point corresponding to ring attachment point
1 Mesh point corresponding to ( )~ side of juncture
n Circumferential wave number, also with respect to axis
Normal to shell meridian (Fig. 1(a))
0 Prebuckling quantity
p Polar
r Ring quantity
s Shell, shear center, or with respect to axis parallel to shell meridian (Fig. 1(a))
t Twist; M, = (M, + M,,)/2
X, y, Xy With respect to x—y system (Fig. 1(a))
o Prebuckling quantity
1,2 Meridional, circumferential directions
12 Shear
Superscripts
k kth ring support
m mth set of constraints
T Transpose
+, — Figure 1(a)
(@] Differentiation with respect to s
*

Figure 1{a)
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INTRODUCTION

RECENT investigations have taken advantage of larger and faster computers to analyze
more accurate models of shell structures. Cohen [1], [2] uses a step-by-step numerical
integration technique to calculate buckling loads and vibration frequencies of ring-
stiffened orthotropic shells of revolution. Kalnins [3] employs a similar method to calculate
nonsymmetric deformations of segmented shells of revolution submitted to nonsymmetric
loads. In [4] a computer program is described by which buckling loads are calculated for
axisymmetrically loaded shells of revolution with general wall construction and with ring
supports at the edges.

In this paper the finite difference method is used for the analysis of shells of revolution
consisting of elastic shell segments joined by elastic rings. The shell segments may be of
various geometries and wall constructions. There are two parts of the analysis: a part in
which the axisymmetric state of an axisymmetrically loaded shell is calculated from non-
linear theory, and a part in which buckling loads and natural frequencies corresponding
to nonsymmetric displacements are calculated. Equilibrium equations similar to those
derived by Reissner [5] are used for the prebuckling analysis, and an energy method based
on kinematic relations given by Novoshilov [6] is used for the buckling and vibration
analysis. The assumptions governing the analysis are:

1. The material is linear—elastic.

2. The Kirchhoff-Love hypothesis holds: normals to the undeformed surface remain
unstrained and normal to the deformed middle surface.

3. The structure and loads are axisymmetric, and the prebuckling or prestress deforma-
tions are axisymmetric.

4. The prebuckling deflections, while considered finite, are moderate. That is, the square
of the meridional rotation can be neglected compared to unity.

5. The ring stiffeners are reasonably “thin”. That is, a typical cross-section dimension
is small compared to the radius of the ring.

6. The cross-sections of the rings remain undeformed during the deformations of the
structure, and the rotation about the ring centroid is equal to the rotation of the shell
meridian at the attachment point of the ring.

7. The ring centroids coincide with the ring shear centers.

8. If meridional stiffeners are present, they are numerous enough to include in the
analysis by an averaging or “smearing’ of their properties over any parallel circle
of the shell structure.

For axisymmetrically loaded shells of revolution the partial differential equations
governing nonsymmetric buckling and vibration can be reduced to ordinary differential
equations through separation of variables. These equations can be solved by application of
numerical integration, finite difference, or finite element techniques. With the existence of
large computers it is now practical to solve with reasonable accuracy almost any buckling
or vibration problem for shells of revolution. It is, for instance, easy to include in the
buckling or vibration equations prebuckling quantities as they are obtained from a non-
linear analysis. While nonlinear equations were used for instance by Weinitschke [7] and
Budiansky [8] for the symmetrical snapping of spherical caps, the influence of the prebuck-
ling displacements and stresses on bifurcation buckling was first recognized by Stein 9]
for cylindrical shells and by Huang [10] for spherical caps. In cases such as that treated by
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Stuhlman et al. in [11] with edge moments introducing hoop stresses in the shell, it is
imperative that an accurate prebuckling analysis be used.

This paper contains the buckling and vibration analysis only. The nonlinear prebuckling
analysis for the axisymmetric prestress is given in [12], in the following it is assumed that
this prestress state is known. Some numerical results are given in which two finite-difference
schemes are compared, convergence properties are demonstrated, and the effects of round-
off errors are revealed. Further numerical results are given in a separate paper [13] in
which several comparisons are made between theory and experiment for the buckling of
various shells of revolution. Some natural frequencies of an axially compressed, ring and
stringer-stiffened cylinder are also given in [13].

It is felt that the major contribution of this paper is the derivation of a practical approach
to the solution of a wide class of problems which confront the designer of complex shell
structures. The development is similar to that used in the finite element method, and is
ideally suited for programming on the digital computer.

The numerical results in this paper and in [12] and [13] were obtained by means of a
digital computer code called Bosor 2, which is based on the analyses presented here and in
[12]. The Bosor 2 program has a broader capability than its predecessor the Bosor (Buckling
of Shells of Revolution) program, which is based on the analysis in [4]. The extensions
include:

1. Analysis of segmented (composite) shells, such as cylindercone combinations or
joined shells with dissimilar wall characteristics.

2. Analysis of the free vibrations of prestressed, segmented, ring-stiffened shells of
revolution.

3. Analysis of shells with discrete rings at a number of stations along the meridian,
rather than at the boundaries only.

4. Use of more accurate kinematic relations. The analysis of [4] is based on Donnell-
type equations. The analysis which follows is based on Novoshilov-type kinematic
relations.

5. Analysis of shells with wall properties which vary along the meridian.

6. Increased generality of the type of axisymmetric loading applied to the shell.

One of the more important extensions of the analysis of [4] is the capability of treating
segmented shells. This capability can also be used to advantage in the analysis of simple
shells. For instance a rather long cylinder submitted to pressure loading can be divided
artificially into three segments : two edge segments in which stresses and displacements vary
rapidly over short lengths, and a central segment in which deformations are uniform.
The station spacing in the finite difference mesh can be small in the two edge segments and
large in the central segment. It has been found from experience that it is better to divide
the shell into segments, and thus to maintain uniform station spacing within each segment,
rather than to vary the station spacing within any segment.

ANALYSIS FOR BUCKLING AND VIBRATION

The nonlinear analysis for the axisymmetric prestress is given in [12]. In the present
paper it is assumed that this prestress state is known. The quantities N,q, N4, N,,, and
Xo appear in the buckling and vibration analyses as known variable coefficients.
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The energy method used in the eigenvalue analysis is based on the definition of the
Hamiltonian corresponding to an n-wave deformation pattern:

M M K+1
H,=Ux+ Y, U',‘—(TS+ Y T’,‘)+ Y Ui 8y
k=1 k=1 i=1
where
U, = shell strain energy
U* = strain energy of kth ring stiffener
T, = shell kinetic energy
T* = kinetic energy of kth ring stiffener
U! = ith set of constraint conditions.

The functional H,, is given in terms of the shell wall displacements and their derivatives.
Integration along the shell meridian is performed numerically. The derivatives with
respect to the meridional coordinate “s” are simulated by two and three point finite-
difference formulas. The derivatives with respect to the circumferential coordinate 6 are
eliminated because U = u, sinnf, V = v, cos nf, W = w, sin nf. In this way H,, which is
originally an integro-differential quadratic form, becomes an algebraic quadratic form.
The constraint conditions are equations of displacement and rotation compatibility at
junctures between shell segments and at the shell boundaries.
The algebraic quadratic form H, is expressed as:

H, = |g){[K,]+[K,]+Q*[M]]{q}. 2

The vector |g] represents the dependent variables. These include the displacements at the
meridional stations in the finite difference mesh and Lagrange multipliers corresponding
to the constraint conditions. The matrix [K,] represents the stiffness matrix (including
constraints) of the undeformed and unstressed structure ; [K,] represents the contribution
of the prestress terms N4, N, N,,, and y, to the stiffness matrix ; and [ M] represents the
mass matrix. These matrices are symmetric.

The problem is to find the value (eigenvalue) of a parameter which causes H, to be an
extremum. In vibration problems the eigenvalue parameter is the square of the frequency
Q2. In buckling problems the eigenvalue parameter may be the pressure amplitude p, or any
line load or moment V, H or M applied to any ring. If some applied load is regarded as the
eigenvalue parameter, the kinetic energy terms T, and T* are zero. The lowest eigenvalue
then represents the bifurcation load and the eigenvector represents the mode shape. If,
however, the applied load is fixed and Q? is regarded as the eigenvalue parameter, the
terms T, and T* are non-zero. The eigenvalues and eigenvectors then represent frequencies
and mode shapes for prestressed shells of revolution. Minimization of H, with respect to
all of the g-components generates a set of simultaneous linear homogeneous algebraic
equations, the coeflicient matrix of which is symmetric. Nontrivial solutions are obtained
for these equations on the digital computer.

Derivation of [K,], [K,], and [M]

In the following derivation variables are used which are defined in Figs. 1(a) and 1(b).
These figures show a segmented, ring-stiffened shell supported at the end A by a ring and
clamped at B. There are two intermediate rings, one in segment # 1 and one between
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segments # 1 and #2. Fig. 1(a) shows the structure and Fig. 1(b) shows the corresponding

finite-difference model.
It is necessary first to define the various components of strain energy and kinetic energy.

The shell strain energy U, can be written as:

Uo =3 [ 181+ Lol w} + 4P {d))r ds )

-

CLAMPED EDGE

‘ PRESSURE , P SEGMENT {12

RING ATTACHMENT
POINT

e, {negative)

SEGMENT #1

FREE EDGE WITH RING

(o)

@)

Fi1G. 1. Ring-stiffened shell with two segments.

where
[S/=[N{,Ny,Ny;, M, My, M, |
le] = {S}T = &1, €25 812, %1, %3, 234 5]
o] = (¥, 7]
No, O 0 4)

[No] = 0 Nzo 0
0 0 (NiptNy)

ld] = [u, v, w]
-p/Ry 0 —-r
(Pl=1 0 —P/R, 0

-p 0 p(1/R; +1/R,)
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and

( r Jr

N, Ciy Ca 0 Gy Cs O &

N, Ciz Ciz 0 Gy Cps O €2

Ny, 0 0 Gy O 0 Cs6 €12

= [Cl{e} = (5)

M, Cia Cop 0 Cuy Cus O *y

M, Cis Cs 0 Cus Css O X,

& = u+w/Ry+xox
&, = —nv/r+r'ufr+w/R, (6)
g1, = V' —rvfr+nufr+ ol

=y

®, = —AY[r+ry/r (7)
2%, = 2(—ny/r+ry/r+v'/R,)

x=w-—u/R,

¥ = nw/r—v/R, 8)

y = Ynu/r—rv'/r—r'vfr).

The first term in the integrand of equation (3) is contained in equation (3) of [2]; the
second term appears in equation (2) of [14]; and the third term appears in equation (9) of
[15]. The coefficients C;; of the constitutive equations (5) are given for various types of
shell walls (eccentrically stiffened, layered orthotropic, fiber-wound, corrugated) in [16)].
The values of C,4 and Cg¢ in the present analysis are equal to one-half the values given
in [16] because of the multiplier 2 in the column vector component 23, ,. The kinematic
relations (6)8) which relate infinitesimal buckling strains, changes in curvature, and ro-
tations to infinitesimal buckling displacements are given in equations (4.23) and equations
(3.16) of [6] and Equations (7) and (12) of [2].

Figure 1(b) shows the shell meridian with stations 1,2,3,4,..., 13 identified. The
Hamiltonian H, is expressed at these stations in terms of the displacement components
u;, v;, and w;, and the integration in equation (3) is replaced by summation over all stations.
The tangential displacement components #; and v; occur at stations midway between the
stations for w; and w;, ;. A similar arrangement of mesh points was used by Stein in [9].
At the ends of each segment there are “fictitious” points, shown as circles, which cor-
respond to w-values. These points are needed for the expression of the first and second
derivatives of w with respect to s at the ends of the segments. The arrangement of mesh
points and displacements shown in Fig. 1(b) has been determined to be superior to an
arrangement in which u;, v, and w; correspond to displacement components at a single
point. More will be said about this in the section on Numerical Results. The station spacing
in each segment is constant, but different spacings are used in different segments (h, # h,
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in Fig. 1(b)). The displacements and their derivatives at the ith station are:

u = (u;+u;_ )2

u = (u;—u;_)/h

v= (04 0-4)/2
v = (v;—v;—)/h

W= (Wi — 2w+ W, )/h.

It is convenient to define the vector |g;] by

W= Wy,

- T _
lg: = {Qi} = (Wi, Uim1s Uim gy Wiy Uiy U Wiy |

From equations (6)-10) it follows that

in which

[Bil =

ko

0

1
?
~7/2rh

r
rh

[

{e:} = [[Bi]+ xoilBi211{q:}

{o} = [R1{q:}
{d} = [D.}{q:}
—1/h 0 1/R,
r'/2r —~nf2r 1/R,
1 r
n/2r (»—E—-E) 0
U 2
hR, 2 h?
—r/2rR, n/2rR, —n?/r?
L3 (.._r;_i) 2"
rR, rR, kR, r
1/h 0
r/2r —n/2r
1 7
n/2r (z-z)
[_ 1 _(I/Rl)] o
hR, 2
—7/2rR, n/2rR,
n r 2
rR; (_r_ﬁfﬁ;

W= (W, —w;_)/2h,

r'j2rh

I
rh |

©)

(10)

(11)

(12)

(13)

(14)
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[—12n —12R, 0 0 —12R, O 12k
0 0 0 0 0 0 0
0 0 —12R, mr O —12R, 0
B = 2 2 as)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 |
—1/2h —1/2R, 0 0 —1/2R, 0 1/2h
Rl= | o 0 —~12R, nr 0 ~12R, 0 (16)
1 ¥ i 7
0 n/4r (ﬁ_;ﬂ) 0 n/4r ( ~§g——§)

0 12 0 0 12 0 0
[Dl=10 0 12 0 0 1/2 0. a7
6 0 0 1 0 0 O

For convenience the subscript i has been omitted from the arrays in equations (14)-(16).
The geometrical parameters r, 1, 1/R,, 1/R, and (1/R,)' are evaluated at every station.
The station spacing h should also be subscripted, since it varies from segment to segment.

Insertion of equations (5) and (11)-{16) into equation (3), and replacement of the
integral with summation over the number of stations in the finite-difference mesh leads to

N
U = g .Z‘ rifsi g (B )" + 2, Bi2)"1IC 1 [[Biy ] + Xoil Bi2]]

18
+[RI'INIRI+[DIPID] {a:}- )

The integration weights As; are equal to & for all stations except the end stations of each
segment, at which As; = h/2. The strain energy of the kth ring stiffener can be written in the
form

wr|k
n v:
Uk = -i-rfLu;", v¥, w¥, x MG} +Gh) w* )
X

in which r* is the radius to the centroid of the kth ring and u¥, v*, and w* are the axial,
circumferential, and radial displacements of the ring shear center. (In this paper the shear
center is assumed to coincide with the centroid.) The quantity G, is the stiffness matrix of
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the unstressed ring, given from [1] by

n*(m?l,+GJ/E)/r?

(641 = 5

E
7

Symmetric

e

A+n*l /r?

and G% represents the effect of prestress on the ring stiffness:

[G3] =

n? 0 0 o
N 1 -n O
r 5 ’ n? 0f
Symmetric 04

n*l_ /r? n

RAHA+ L) —n(A+n*lLr2)

21 +GJ/E)r.]
—nl/r.

n*ljr.

I, +n*GJJE

(20)

21

The displacements and the rotation of the ring shear center during buckling are related to
those of the point on the shell reference surface which corresponds to the attachment point

of the ring (see Fig. 1{(a)) by

-

\

u*| * u*

U:: Kk k pk U*
r= [El + XOjEz] *

wi w

v

X X 1

7

in which [E%] is the transformation matrix for the undeformed shell, given by

[B4] =

1 0 0 —ey
—enfr (I+e/ry —emnfr 0

0 0- 1 e,

0 0 0 1

(22)

(23)

and [E%] represents the effect of “prebuckling” meridional rotation on the transformation

22):

(E3] =

0 0 0 —€y
exnfr eyfr —emir 0

0 0 0 —ef

0 0 0 0

(24)

- =
In equations (20)24) the superscript k has been omitted from the arrays. The subscript j
is the meridional station number corresponding to the ring attachment point. The vector
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[u*, v*, w*, x]; is related to the vector |g;) by
' u*
p*
1ol T [T] {‘Ij} (25)
w
Y
where ~ )
0 T / 2R2 0 — ?" ?’/ 2R2 0 0
0 0 1/2 0 0 12 0
(1] = , (26)
0 ¥2 0 rRy, r¥2 0 0
—12h —12R, 0 O —1/2R, O 1/2h

Equations (22) and (25_) can be used for determination of U¥ in equation (19)—in termsof {q;} :

T
Uy = Er'élqjj [TY(E] + x0,E51(G} + GAILES + o, E51 [T {g;}- 27)
The kinetic energy of the shell is given by
B
T, = ’5‘92 f m(u? +v? + w2y ds (28)
A

which, by use of equations (4¢) and (13), and with numerical integration can be written
in the form:
(29

N
1 = Q? 'Zn myrAs|q;/[DIT11{D{q;}.

SR

The quantity m, represents the mass/area at the ith station and [I] is the identity matrix.
The kinetic energy of the kth ring is given by

7
T* = 5Q2pfr§[A"(u2‘§2 R AW G+ T+ Iy =20 v,
Subscript ¢ denotes ring centroid and j denotes meridional station corresponding to the
ring attachment point. In this work the centroid is assumed to coincide with the shear
center. By use of equations (4c), (12), {22) and (25), equation (30) can be written in the form

(30)

T = gﬁzp’:rﬁtm [AMTYEY + %o ESTT(THIES + 1o, E31(T1+ [RIT[THI[R]}{q;} (31)
where
1 00 0
(T3] = oroe 9 (32)
0 01 0
0 0 0 IYya*
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and
0 0 0
[Tel=|0 & -I (33)
0 I [
The mth constraint condition U™ can be written in the form
[_ ut ]
U*+ U*_
Ue = 1AT, 43, 45, 230 Uy p +10T+ 20070y (34)
w w
e A

in which subscript [ refers to the meridional station corresponding to the mth juncture
between segments, and [Q7] and [Q%] are analogous to the negatives of [EX] and [E%]:

[ 1 0 0 d,
ndyfr —(+dy/r) ndr 0
en=| ‘ ' : (35)
0 0 1 —d,
0 0 0 -1
L _ .
0 0 0 4,
—ndy/r —d,/r ndyr 0
Q7] = . 36
03 . o o 4 (36)
0 0 0 o

In equations (35) and (36) superscript m has been omitted for convenience from the arrays.
The A7, A%, A%, and A7 are the mth set of Lagrange multipliers associated with the /th station
at which constraints are imposed on the quantities u*, v*, w* and y. For example, the
constraint conditions between Segments #1 and #2 in Fig. 1 (m = 2, | = 7) arise from the
requirement that the motion during buckling or vibration of point D relative to point C
involves no deformation of the ring cross-section. The quantity A7 corresponds to com-
patibility of axial displacements u*~ and u**; A7 corresponds to compatibility of cir-
cumferential displacements v*~ and v** ; A% to compatibility of radial displacements w*~
and w** ; and A% to compatibility of meridional rotations ¥y~ and x*.

Displacement boundary conditions applied at the A and B ends of the meridian (see
Fig. 1) take the form

u*
*

v
Ur = [A1, A3, 43, AZJLK™][QT + x,,07] " (37)

*

X |
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in which at the end A of the meridian m = 1 with
'K,, 0 o0 0]
0 K 0 0
(K™ = “ (38)
0 0 K, O
0 0 0 K,
and at the end B of the meridian m = K+ 1 (K = number of shell segments) with
Keyy 0 0 0]
(K"] = (39)
0 0 Kg O
0 K
00 ne

The quantities K ,;, K 4,, etc. and Kg,, Kg,, etc. are assigned values, either unity if the
corresponding displacement component is zero or zero if the corresponding force com-
ponent is zero. The displacement conditions correspond to a shell which is supported at
distances d7 and d7% from the reference surface. For the shell in Fig, 1(a) the K ,,, K ,,, etc.
would all be zero and the K, , Kg,, etc. would all be unity. The constraint conditions (34)
and (37) can be written in terms of the vectors |g* | and |~ | by introduction of equation (25).
The compatibility condition (34) can be written as a symmetric quadratic form in the follow-
ing way:

q
Ur=197,4q"|[F1{4 (40)
q+
with
A= [AT, 13, 43, 22] (41)
(1x7 x4 7x7]
(0] [eT]" (0]
4x7 4x4 4x7
[F]1=|[QT] (0] (T] 42)
Tx7 Tx4 7x7
(0] (11" (0]
Q = [07 +x0,27]) (43)
The boundary conditions (37) take a similar form:
0] [KQT)" [0]] (g~
Ur=1g9",4q"||[KQT] [0] [0}f{4 (44)
(0] 0] [0} lg”
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The three coefficient matrices [K,], [K,] and [M] in equation (2) can now be written

through use of equations (18), (27), (29), (31), (34) and (40). The following expressions are
obtained :

lq)[K,]iq} = g ; lq:)[r:iAs{B;]"[C][B;, ]+ S TIE ) [G,[E, [ T]] {a:}

- (45)
q
+5fl.q_’ '{, q+J[F1] }‘
q+
9)(K:) ) = 5 X § 140 il B T IC [Bia) + 1o B2 IC.[Bu)
+x2[B;,]"[C)[Bi)+ [R]T[N,][R]+ [D]IPI[D])
+0H{[T1 (([ET[G, + G [E 1+ 1,[E, )G, + G, E, ] (46)
+ X2[E;)T[Gy + G, [E )+ [E()[G,1E, DT} {ai}
.
+5f[q—’ '{’ q+][F2] )“
q+
@M1} =3 T 1aJDmrAs DT 11D]
. @)

+ 5iPr"c(A[T]T[E1 + XaiEz]T[TA] (E, +x:E 1 [T]+ [R]T[TB] (R])] {‘Ii}'

The & and 8! are Kronecker deltas, and [F,] and [F,] refer to equation (42) with the first
and second parts of the matrix Q, respectively [equation (43)].

The coefficient matrices [K,], [K,] and [M] have the form shown in Fig. 2. This matrix
corresponds to the shell modeled as shown in Fig. 1(b). The boundary conditions at 4
contribute the elements [KQT], and [KQT]T; the compatibility conditions for conformity
of displacements and rotation at the juncture between Segment # 1 and Segment #2
contribute the elements [QT],, [QT1%, [T], and [T]T; and the boundary conditions at B
contribute the elements [KQT], and [KQT]}. Expression of H, at each of the stations 1
through 13 leads to the sub-arrays of elements so labeled in Fig. 2.

It can be shown that the equations generated by minimization of H, [equation (48)]
with respect to the displacement components u;, v; and w; [indicated in Fig. 1(b)] are the
Euler equations of the variational problem in finite difference form. The equations corres-
ponding to 0H,/0u; = 0 and 0H,/dv; = 0 represent equilibrium of in-plane forces at the
stations where the u; and v, are specified ; those corresponding to 6H,/0w; = 0 represent
equilibrium of normal forces at the stations where the w; are specified.

Solution of the eigenvalue problem
The buckling loads or vibration frequencies are calculated from the set of linear,
homogeneous, algebraic equations

[[K]+[K ]+ Q[ M]]{q} = 0 (48)
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Fi1G. 2. Form of coefficient matrix with constraint conditions. This matrix corresponds to the model in
Fig. 1(b).
for which non-trivial solutions exist if
2 —
K 1+ K]+ QM) = 0. 49)

The matrices [K, ], [K,] and [M] are strongly banded. In vibration problems for prestressed
shells calculation of the lowest 5 or so eigenvalues is straightforward. A *“‘classical” eigen-
value problem

[K;+K,lg+Q*[M]g =0 (50)

is formulated, and the power method [17], [18] is used for calculation of the lowest few
eigenvalues Q? for a particular wave number n. The number of eigenvalues which can be
determined accurately depends on the number of mesh points in the finite difference
analysis and the complexity (‘““waviness” in the meridional direction) of the mode shapes.
In buckling problems the eigenvalues of [K, + K,] for given n can be found by “plotting”
|K, + K,| versus the eigenvalue parameter A (A = p, N,,, or other load) to obtain the load
for which | K, + K,| first vanishes. This technique was used in [4] for calculation of bifurca-
tion loads of shells of revolution. On the other hand, a technique of successive approxima-
tion, similar to that employed by Cohen [2] for buckling problems can be used. This
technique involves the definition of a sequence of “classical” eigenvalue problems which
yields a sequence of loads that converges to the load for which |K, + K,| = 0. A typical
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“classical” eigenvalue problem in the sequence is
(K, +K,lg+4[K3]g = 0. (51)

Suppose the original load is p,. The prestress terms N4, N,o, N,, and y, which appear in
[K,] are calculated for this load by means of the nonlinear analysis described in [12]. Then
from equation (51) a value 4, is obtained. The new load is p, = p,(1 +4,). New values of
N o> N, etc. corresponding to p, are now calculated from the nonlinear analysis of [12]
and a new matrix [K,] is obtained. Then 4, is calculated from equation (51). The next value
of the load is p; = p,(1 +4,). The iteration process continues until 4, the kth correction,
is smaller than some preassigned number. Convergence in some typical cases is discussed
in the section on numerical results.

Truncation errors in modal stress resultants

Since a finite number of mesh points is used in the finite difference analysis, truncation
errors occur. These errors are particularly large in the evaluation of the modal stress
resultants at the boundaries of a shell and at the junctures between shell segments. In the
absence of edge displacement constraint conditions and edge rings the natural boundary
conditions N; = 0, N, = 0,and Q, = 0 should be satisfied at the boundaries of the shell.
The modal forces N,, N,,, M, and @, should be continuous at any juncture between shell
segments, provided that the meridian and its slope are continuous and that no ring support
exists here. It can be shown that such is the case in the limit h# — 0. The equations which
correspond to three of the natural boundary conditions at the end ““A” of the shell are
0H /ou, = 0, 0H,/0v, = 0, and JH,/0w, = O (see Figs. 1 and 2). These equations yield,
respectively :

Ny+AN; =0, Npj,+AN;, =0, M, +AM, =0 (52)

where AN, AN, and AM, are the truncation errors and are given approximately by :

h
AN, = "5(N27'+N12"—N10X"/R1)A,
h ,
AN[Z = +‘2—r(N12r +N2n+N20l//r/R2)A, (53)

AM,

I

h
—'Z_r(Mzrl—Mzn+N1Xor+N10Xr)A~

The quantities AN,, AN, and AM, for the end ““B” of the shell are given by equation (53)
with the opposite signs. For a shell of many segments, equations (53) apply at the ends of
each segment, even if rings are present at the junctures between segments. Errors in the
modal stresses N, and M, at the ends of segments are given approximately by:

AN, = C,AN,/Cy,
AM; = C4sAM,/Cyy.

Figure 3 shows the discontinuities in modal stresses occurring between segments of shells.
The top three plots give N, N, and N, for the buckling mode of a shallow spherical cap
with an edge ring. The bottom plot gives M, for the fundamental vibration mode of a

(54)
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FiG. 3. Buckling and vibration modal stress resultants showing local truncation errors.

cylinder with an ellipsoidal end closure. The circles at the juncture represent the stresses
calculated by use of equations (5) and (6)—9) without correction for the errors AN, AN,
AN, and AM,. Subtraction of the errors (53) and (54) results in modal stresses which are
continuous at the juncture. It is evident from Fig. 3 that these errors at the juncture and
edge do not “propagate” into the adjacent shell segments. Similar results have been
obtained at the boundaries of shells with partially free edges (e.g. simply-supported).

Correction of the modal stresses at shell edges and junctures does not affect the eigen-
values, and is therefore not of great significance in buckling and vibration analyses. How-
ever, such corrections would have to be made in the finite difference stress analysis of shells.
Similar behavior is expected, for example, in the stress analysis of non-symmetrically loaded
shells by a two-dimensional finite difference scheme. Since the edge stresses are likely to be
the largest, it is important to calculate them as accurately as possible.

NUMERICAL RESULTS

The computer program based on the nonlinear stress analysis of [12] and the linear
stability and vibration analysis presented above has been checked through cases for which
solutions are known. A rather extensive investigation has been performed of the convergence
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properties of the eigenvalues with respect to number of points in the finite difference mesh
and with respect to number of iterations required for the solution of nonlinear problems.
Additional numerical results, including comparisons between test and theory, are given in
[131.

Convergence properties

Table 1 gives six examples of the convergence of the sequence of eigenvalue problems as
defined by equation (51). The first two examples are for an externally pressurized spherical
cap with an edge ring and a constant applied edge moment, M, (see top of Fig. 3 for geo-
metry). The zeroth iteration represents the program user’s initial guess of the critical load.
In Example 1 the convergence criterion for the pressure (0-1 %) is satisfied after four itera-
tions. Example 2 represents a problem in which nonlinear effects are dominant because
of the large edge moment M, = 0-8 in-lb/in,, applied to the spherical cap. Convergence of
the pressure is rather slow, and calculations are terminated before the solution has con-

TaBLgE 1. CONVERGENCE OF SEQUENCE OF EIGENVALUE PROBLEMS (K| + K,]{g} + A4{K,]ig} = 0

Ex. 1t Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6
Iteration Sph. cap Sph. cap Cyl. (Fig. 4) Cyl. (Fig. 4) Cyl. (Fig. 4) Cyl. (Fig. 4)
number M, =02 M, =08 11 points 41 points 91 points 91 pts. D.P.
k Per (psi) Per {psi) N,, (ibfin) N, (Ib/in,) N, {Ib/in) N, (Ibfin)
0 0-20000 0-1000 7750-0 77500 7750-0 7750-0
! 0-65002 0-1407 79600 77663 79178 77155
2 078577 01927 80219 77777 80980 77840
3 077928 0-2546 80396 77815 82470 77868
4 0-77965 0-3221 8044-6 77825 8103-4 77878
5 0-3883 80460 77784 81281 77881
6 0-4462 8046-4 77712 81352
7 04917 77796 82161
8 0-5245 77814 8260-4
9 0-5466 81928
10 0-5609 8009-8
11 0-5699 82576

1 Ex. 1 and 2 are for externally pressurized spherical caps with edge rings {(see Fig. 3, top}). Ex. 3-6 are for
axially compressed, longitudinally stiffened cylinders (see Fig. 4). Ex. 6 calculations in double precision.

verged to the required accuracy of 0-1 %,. With a better initial guess for p,, or if iterations are
allowed to continue, a solution of p,, = 0-582 psi is obtained. Examples 3-6 all apply to
the same axially compressed cylindrical shell for which various numbers of mesh points
are used (see Fig. 4 for geometry). The first three examples give results from single-precision
calculations and the last example gives results from double-precision calculations. The
accuracy required for computer “approval” of the solution is 0-01 9;. It is seen that round-
off errors cause some difficulty in Example 4 and prevent completely convergence in
Example 5. It is also clear from Example 5 that a convergence criterion could be chosen
{(such as 1 %) which would lead to “approval” of the solution 8135-2 Ib-in. This load is not
within 19 of the correct load (77881 1b/in.). It is evident from the double-precision cal-
culations of Example 6, that round-off errors cause the discrepancy. Figure 4 shows how
round-off errors can lead to erroneous results when calculations are performed in single
precision. The loads corresponding to 41 and 51 mesh points are “converged” solutions in
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FiG. 4. Convergence of buckling load with increase in number of mesh points.

the sense of Table 1, but they do not have the required accuracy when compared with the
solutions labeled “Double Precision”. Further increase in the number of mesh points with
single-precision calculations leads to further deterioration in the accuracy of the results.

Table 2 gives buckling loads for a spherical shell with an edge angle & = 160° and a free
edge. The wave number n = 2. Loads are tabulated as a function of the number and the
distribution of mesh points. Run times for the Univac 1108 digital computer are also given.
These are the times in seconds required for calculation of the buckling load for a single value
of the wave number n. Nonlinear prebuckling effects are included. It is seen that much
accuracy is gained in this case by division of the shell into two segments. Mesh points are
concentrated in the edge region where the modal displacements vary rapidly. For two
cases double-precision calculations were made as a check on the single-precision results.

Figure 5 shows a cylindrical shell stiffened by small and large rings. It is desired to
find the buckling pressure of this shell. In the analysis the small rings are “smeared out”
(see [16]) and the intermittant large rings are treated as discrete elastic structures. The large
rings cause significant local disturbances in the prebuckling and buckling modal behavior,
as seen in Fig. 6. It is therefore advantageous to analyze the single shell in segments, con-
centrating mesh points near the large rings where prebuckling and buckling modal displace-
ments vary rapidly.
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TABLE 2. BUCKLING LOADS OF A SPHERICAL SHELL, x = 160°, 4 = 0, £ = 091, v = 0-3 CONVERGENCE WITH
NUMBER AND DISTRIBUTION OF MESH POINTS; COMPUTER TIME

Buckling Buckling Univac 1108
pressure pressure computer time
Number of How distributed Per % 107 (Ib/in?) P % 107 (Ib/in?) (seconds)
mesh points single double single
precision precision precision
30 1 Segment 19-345 8511
40 1 Segment 26978 10-235
50 1 Segment 30-730 10-186
60 1 Segment 32:650 11794
70 1 Segment 33761 10-411
80 1 Segment 34-417 11-847
90 1 Segment 34-866 9-614
97 1 Segment 35056 10-069
10, 10 2 Segments
(0°-135°) (135°-160°) 33-594 4-574
15,15 2 Segments
(0°-135°) (135°-160°) 35-405 5626
20, 20 2 Segments
0°-135°) (135°-160°) 35872 6-946
25,25 2 Segments
(0°-135°) (135°-160°) 36039 8:595
30, 30 2 Segments
(0°-135°) (135°-160°) 36:090 9-434
35, 35 2 Segments
(0°-135°) (135°-160°) 36-160 36:175 10-670
40, 40 2 Segments
(0°-135°) (135°-160°) 36-157 11-981
45,45 2 Segments
(0°-135°) (135°-160°) 36206 36-223 13223
double
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F1G. 5. Geometry of ring-stiffened cylinder submitted to external hydrostatic pressure.
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FiG. 6. Prestress state and buckling modal characteristics of the externally pressurized, ring-stiffened cylinder shown in Fig. 5. Single shell analyzed as six segments
with mesh points concentrated around large rings.
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Vibration modal characteristics
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Fi16. 7. Comparison of vibration modal characteristics with finite-difference schemes No. 1 and No. 2 for the ring-stiffened cylinder shown in Fig. 9.
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FiG. 8. Comparison of buckling modal displacement u with finite-difference Schemes No. 1 and No. 2 for the axially compressed cylinder shown in Fig. 4.
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Comparison of two finite difference schemes

Figures 7 and 8 show comparisons between a finite-difference scheme in which all the
displacement components u;, v; and w; are specified at the same point (Scheme #1) and
the scheme indicated in Fig. 1(b) and equations (9} {Scheme # 2). In the Scheme # 1 central
differences are used everywhere except at the ends A" and ““B” of the shell, where forward
and backward differences are used, respectively. With Scheme # 1 the coupling between
adjacent u; and v; values is weak, since no second derivatives of these variables appear in the
energy expression. This situation often leads to the “jumpy” behavior of the eigenvector
and affects the accuracy of the eigenvalue. Figure 7 shows the fundamental vibration mode
of a ring-stiffened cylinder as calculated by the two schemes. The cylinder and ring geo-
metry are shown in Fig. 9. Figure 8 shows the buckling modal displacement u of the axially
compressed cylinder depicted in Fig. 4. Convergence of the critical load with number of
mesh points is far more rapid with the finite-difference Scheme # 2 than with Scheme #1.

RINGS

, /,"
obe” ' SIMPLE —— 8,
3045" .06 SUPPORT

Fi1G. 9. Geometry of vibrating ring-stiffened cylinder.
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AGcTpakTt—Mcnonbiyercs 3nepruyeckas (OpPMYNMPOBKA BMECTE ¢ METOAOM KOHEMHBIX pa3HOCTEd, ¢
LEJIBIO BHIBEACHUA YPABHEHMH, NMPMBOISLLIMX K Harpy3kaMm BbIUIyYMBAHMS W 4acToraM KonebaHui cer-
MEHTHBIX YNpyrux o0oJio¥ek BpalleHHs, TOANEPKEHHbIX KONAbUAMH. Konbua paccMaTpuBaroTcs Kak
NMCKPETHBIE YNIpYrue KOHCTPYKuuM. Jaerca xBagpaTkaa GopMa ajis NOJHON MOTEHUMANLHOM M KHHETU-
YeCKOH 3SHEPIrUM, NYTEM HMHTEHCHMBHOTO NMPUMEHEHMsT MATPHYHLIX MeromoB. PaspaboTka oxa3nisaercs
noaobHa K TOH, KOTOpas MCNONL3YETCA B METOAE KOHEYHOTO 3jeMeHTa. OHa WAEANbHO MOAXOAMT OJIN
NpOrpaMMHPOBKM Ha BBIYMCIIMTENIbHBIE MALUMUHbLI. [lAa€TCA YHCIAEHHbIE Pe3yNbTarbl, B KOTOPHIX CPaBHH-
BalOTCA /1Ba THIIA NPHGNMKEHHH B KOHEMHBIX pa3HocTAX. UccneayroTcs CBORCTBA CXOAMMOCTH coBCTBEHHBIX
3HaYeHHH U COBCTBEHHBIX BEKTOPOB.



